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FOREWORD

This document is submitted as an interim report on the rarefied-
gas viscoseal investigation which is a portion of "A Fundamental Study
in Low-Density Gas Dynamics" at the University of Tennessee. Support
for this work was provided by the National Aeronautics and Space
Administration under Research Grant 43-001-023. These studies, under
the direction of Dr, M. W. Milligan, have been confined to internal
rarefied gas dynamics and have, in addition to the viscoseal, included
investigations of low density flows in long and short cylindrical
tubes, annuli, porous media, long square tubes, and nozzles.

This report was submitted to the University of Tennessee in partial
fulfillment of the requirements for the degree of Doctor of Philosophy

and is presented here with minor changes in format,

Approved%%%m S O

M. W. Milligan H. $—#ilkerson
Principal Investlgator







ABSTRACT

A fundamental study of the rarefied-gas viscoseal was initiated to
expand the basic understanding of its operation under low-density conditions.
The efforts reported consist of both experimental and analytical investigations.
The theoretical analyses are based on formulating rarefied corrections to
the laminar continuum equations for viscous flow. Both slip boundary
conditions and self-diffusion contributions are applied to the Reynolds
lubrication equations. An experimental investigation has been conducted
on a multiple grooved two-inch diameter viscoseal over a wide range of gas
densities and shaft speeds up to 30,000 rpm. Comparisons are presented
between actual viscoseal performance and the theoretical predictions for
both sealing coefficient and net leakage parameters as functions of the
degree of gas rarefication. Comparisons with the experimental data of
several other investigators are made.

In general the developed theoretical models predict the trends of
the experimental data; however, some deviations between the theories and

experiment exist.
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CHAPTER I

INTRODUCTION

Background

A fundamental study of the gas viscoseal was initiated to
expand the basic understanding of its operation under low density
conditions.

This investigation was a portion of "“A Fundamental Study in Low-
Density Gas Dynamics' supported at the University of Tennessee by the
National Aeronautics and Space Administration under Research Grant
43-001-023. These studies, under the direction of Dr. M. W. Milligan,
have been confined to internal rarefied gas dynamics and have, in
addition to the viscoseal, included investigations of low density flows
in long and short cylindrical tubes, annuli, porous medla, long square
tubes, and nozzles.

A viscoseal is a dynamic shaft seal which consists of essentially
two elements, s shaft and a housing arcund it. Helical grooves are provided
on the shaft and/or the housing,and the relative motion of these two
surfaces produces a viscous pumping action on the fluid in the grooves.

The viscoseal is normally designed with minimal clearance in the
annular space between the shaft and the housing to maximize the performance.
Since this seal does not depend on physical contact to provide sealing
action, it offers essentially zero wear rates and the possibility of low

1




leakage rates. Figure 1 shows a typical viscoseal with a grooved shaft
and a smooth housing.

Mechanical devices which embody the viscoseal geometry are of early
origin and have been in use in excess of 100 years in several applications.
These include uses as a screw extruder for producing flow of very viscous
liquids or plastics, screw oil pumps, and as shaft sealing devices. The
history of these developments into the present day viscoseal is well
presented in References[1,2, and 3]1° The primary stimuli for the recent
renewed interest in the viscoseal have been the demands for advanced
sealing concepts in the space and nuclear programs. Most of the recent
viscoseal investigations have been primarily concerned with liquids as
the sealant with emphasis on the continuum regimes including both laminar
and turbulent flow. The requirement of restricting the flow of fluids
to a space environment has necessitated the development of seals which
operate in the rarefied-gas flow regime. As the leakage:fluid passes
through the seal system, its character changes from that of a continuum
fluid at the higher density end to that of a rarefied fluid at the
lower density end where the fluid exits to space. The complete seal
system would include several components and elements of different design
and purpose depending on whether the fluid being handled was a liquid,

a gas at continuum conditions, a rarefied gas or a combination of these.
This study is concerned with the last element in the total seal system

just prior to the fluid exiting to space as a rarefied gas.

1 , ] s ] .
Numbers in brackets refer to similarly numbered references in the

Bibliography.
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Flow of a rarefied gas is characterized by the ratio of the mean
free path,A, to the significant dimension of the flow field. A gas under
this condition does not behave entirely as a continuous fluid but also
exhibits some characteristics of its coarse molecular structure. The
dimensionless parameter Knudsen number, which is the ratio of A to the
characteristic system dimension, is a measure of the degree of rareficaticum.
When the Knudsen number is quite small, i.e., less than 0.0l, then X is
small in comparison to the flow system characteristic dimension, and
therefore intermolecular collisions are predominant over collisions with
the boundaries. Here one is concerned with macroscopic motion of the
gas as a continuum rather than the microsccopic motion of the individual
molecules. The concepts of classical gas dynamics apply to this flow
situation. For flows in which the value of the Xnudsen number is large,
i.e., greater than 10, collisions with the boundaries dominate over
collisions between molecules. This class of fluid transport is commonly

defined as "free molecular flow."

The region between the continuum and
the free molecular regimes is commonly termed "slip flow." A broad
range of flow of varying character may exist in this region depending on
the proximity of the gas to the continuum or the free molecular regions.
As the gas becomes rarefied, the intermolecular momentum transport in
the vicinity of the walls diminishes due to the reduced number of inter-
molecular collisions. This action produces an apparent diminution in
the viscosity of the gas and creates the effect of a finite "slip

velocity" in portions of the fluid adjacent to the walls. Hence originates

the term ''slip flow."



Relatively few expevimental investigations have been devoted to
rarefied—gas viscoseals. Baron [4] performed experiments using air and
hydrogen as the sealants, but his data are well within the continuum
regime. Hodgson [5] performed experiments with mercury vapor as the
sealant, but reports only a limited amount of data, King [6] performed
tests using air, argon, helium, and sulfur hexafluoride gas, and a portiocn
of these data are noteworthy in being in the non-continuum regime. The
efforts of King are discussed in more detail in Appendix B. Hodgson
and Milligan [7] obtained viscoseal data for air, but again these were
in the continuum regime.

The theoretical analyses of viscoseals having a rarefied gas as
the sealant are also very limited. King [6] performed a theoretical
analysis using a simplified model for the rotor induced flow in the grooves
and a modified form of the Poiseuille viscous flow tube equation for the
pressure induced flows. King's analysis is discussed in detail in
Appendix B. Hodgson [5] performed an analysis of the viscoseal from the
continuum region to the free mclecular regimes by considering individually
the pressure induced flows in the grooves and the clearance annulus
superimposed with the rotor induced flow in the grooves. The procedure
used is patterned after the work of Knudsen in formulating equations of a
certain form to match the molecular and continuum limits. The analysis
of Hodgson is currently under investigation by a fellow researcher,

Mr. K. E. Patterson, and will be documented in the forthcoming master's

thesis [87.




Statement of the Problem

This study is a combined experimental and analytical investigation
of a visco-type gas seal operating under rarefied flow conditions. The
experimental investigations include the gathering of performance data on
a multiple grooved two-inch diameter viscoseal over a wide range of shaft
speeds and gas densities, The theoretical analyses are based on
formulating ''rarefied" corrections to the laminar continuum equations for
viscous flow. It is necessary to account for the slip velocity at the
walls and to account for the molecular diffusion which occurs due to the
concentration gradient. In the analyses the flow is assumed steady,
isothermal, and laminar. The sealant fluid is considered to be of
constant viscosity, Newtonian, and a monatomic gas which obeys the perfect

gas equation of state.



CHAPTER II
THEORETICAL ANALYSES

The analysis of the flow in a viscoseal geometry presents a difficult
and complex problem regardless of the flow regime in question. The
inclusion of rarefication effects further enlarges the difficulties through
the increased complexity of the boundary conditions in addition to the
usual need for numerical integration if diffusion effects are included.
The analysis approach selected has been one of formulating "rarefied"”
corrections to the laminar continuum equations for viscous fleow in the
viscoseal. This approach is similar to that of several previous
investigations [9, 10, 11, 12, 13, and 14] of internal rarefied flow that
have indicated that a single model for gas flow through tubes and annuli,
applicable to the flow regimes extending from continuum to molecular flow,
can be derived by the inclusion of varefied effects on the continuum
model. Weber [9] developed a rather complete theory of rarefied gas flow
through long tubes by combining the flow predicted from the continuum
equation using slip boundary conditions with diffusion flow which exists
due to 2 concentratiqg\gradient, Milligan experimentally verified the
analysis technique of Weber for rarefied flow in long tubes [10] with
excellent agreement. The superposition analysis technique was extended
to include long annuli by Milligan, Cowling, and Wilkerson [12, 13, and
14] with continuing success.

Iin 1959 Boon and Tal published [15] a significant analysis of the
viscoseal in the laminar continuum regime for a constant density fluid.

7




The viscoseal geometry was approximated by two flat plates, one of which
was grooved, moving parallel to each other, The flow field was developed
from a superposition of Couette flows along and across the grooves. The
resulting velocity distributions were integrated to obtain the volumetric
flow rate, and the pressure generation for zero net leakage conditions
was developed. Subsequent investigations by Stair [16, 17, 18, and 19]
using liquids as the sealant showed very good agreement with the analysis
of Boon and Tal. The data of Hodgson and Milligan [7] using air as the
sealant also substantiated this analysis for laminar continuum operation
with gases.

In the work presented here the analysis of Boon and Tal has been
selected.as the model for predicting the laminar continuum viscous flow.
This model will serve as the basis for obtaining two different but closely
related non~continuum solutions. The first of these rarefied solutions
will be derived by the application of slip boundary conditions to obtain
a closed form solution referred to as the "slip-modified Reynolds solution."
A second more complex solution will be obtained using the analysis
technique of Weber to combine the continuum flow plus the slip flow
contribution modified for the molecules which do not experience slip
boundary conditions plus the self=diffusion flows, The second solution

will be referred to as the "composite solution."

Slip-Modified Reynolds Solution

Congider a screw formed on a shaft located concentrically within a
cylindrical housing with a radial clesrance ¢. The annular space is

filled with a gas and the shaft is moving relative to the housing with an



angular velocity, Q. Figure 2 shows a developed view of the viscoseal

gecmetry. The (x, y) axes are along and normal to the direction of

relative motion and the (&, N) axes are parallel and normal to the grooves.

The (x, y) and (&, n) coordinates systems are related by:

g

n

]

X cos O+ y sin O

[

v cos O - X sin O,

Previous investigators [15, 16] have reduced the describing partial

differential momentum equations to the Reynolds lubrication equations.

These analyses were based on the flat plate model of Figure 2 and assumed

steady, isothermal, two—dimensional, laminar flow, Further, these

analyses assumed inertia forces to be negligible in comparison to viscous

forces and neglected body forces and end effects. The describing

mathematical model is taken as:

2

du 1 9P
dzé Ho9g
afv _ 1 oap
dz2 Hoom

Integration of (2-1) and (2-2) gives:

1 9 2

u = 0 3L z + Clz + C2
1 9P 2
v o= 20 50 z C32 + CAG

(2-1)

(2-2)

(2-3)

(2-4)

The integration constants arve determined by the boundary conditions. To

account for the non—continuum effects, slip boundary conditions are

introduced as devived by Kennard [20].

For a monatomic gas, flowing within
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two parallel boundaries, the slip boundary condition can be written

in the following general form:

+ Gx(i;-“z—‘ﬂz o+ EH—(%E' | + 0%,  (2-5)

ugas z=0  ‘wall 0 4 pT 9x” 'z = 0

where u is the velocity in the tangential x direction, z is the direction
normal to the motion, and G is a proportionality constant. If the
temperatures of the surfaces are assumed constant and equal to the gas

temperature then the slip boundary condition reduces in general form to

u = u + G X(éHD

gas wall dz (2-6)

z =0

For the particular geometry under study, the slip boundary conditions
are:

Along the lands:

ur = U cos o + GA dur, gul
ufl =—G>\. dur' Euz
z =h, dz z = hy,
Along the groove:
du
u_| = U cos 0 + G\ EH& ] = u,
gz=0 Z 2 =0
du
u i = - G\ —& I = v,
g,ﬂgh dz = h
P g g
Across the lands:
dvf
A = - U sin o + GA ——] = v
=0 dz 2 = 0 i
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dvr
V. . = - G)\—‘-‘—‘dz ‘ . = Vze
2= By = g
Across the groove:
dv
v = - U'sin o + GA 5251 = Vg
B z=0 z= 0
| dvgi
v = - GA—= Z v, .
g _ . dz ' _ 4
z hg z hg

Using the above boundary conditions the following velocity components
are determined:

Along the lands:

1 3P YT M
U.r = 'é'i SE (Z - h Z) + ( h.r )Z + ul“ (2-7)
Along the grooves:

_ 13,2 Y4~ Y3
ug-t2u BE(Z hgz) + .hg Yz + ug. (2-8)
Across the lands:

1 9P , 2 Vo™ Yy

Vr = _2—].l- gﬁ (Z - hrZ) + (—‘—‘E‘;‘“—)Z + Vl. (2"'9)
Across the grooves:

1 3P 2 V4 T V3
vg =0 an (z° -~ hgz} + ( = Yz + Vg (2-10)

g




L3

The slip velocities at the walls can now be determined, and the following

velocity distribution equations cobtained:

1 9P, 2 -U cos o z
S e - h2) G ZGK/hr) h,

A1+ GX/hr ] 2 GA

-1 3P
+ U cos a(i~iT§EX7E;) g Ezahr 'E; (2-11)

1 9P , 2 ~U cos O z
== 2= - — Co8 > 2
u, = 5u 3E & T B2t (Tioan ) b
g 8
1+ GA/h
1 9P .2 GA
g g
_109p , 2 U sin O z
Ve T 2uam (2 hoz) + (73 ZGA/hr) b
1+ GA/h
o c, 123 2 G
- Usin 0TI ) T men P oh (2-13)
_ 1 9P . 2 U sin 0 z
Ve T 21 (27 - hyz) + G5 evn’ n
8 g
1 + GA/h
A S | O _
U sin &(l T ) 5B hg ol (2-14)
g g
Neting that the axial velocity components are:
uy =y sin O (2-15)
vy = vy cos O (2-16)

the axial f1l rate components . and may be determined.
e axi oW pone Qgr’ Qgg’ Qnr Qng Y ete e
The widih of the flow path for the £ land flow component is (1 ~y)7D

and the path width for the & groove flow is ymD. The ratio of the groove
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width to the groove plus land width is defined as Y. The axial

component of the & coordinate land flow is:

h h
- _ r = . r : e
Q. = (1 -Y)m / U dz = (@ y)™ [ * U sin o dz . (2-17)
0 0

Substituting Equation (2-11) into Equation (2-17) and integrating gives

h
1 oP GA 1
Qgr = (1 ~y)TD sin OL[—ZU (gé‘)r hi (- -h—l: - g)‘l‘UcOS OL?]':‘] . (2-18)
In a similar manner:
_ GA _ L g
QEg = YD sin a[ o ( E) h (- P E) + U cos O 5 ] (2-19)
g
h
1 9P GA X
Qnr = (1 -y) 7D cos u[gﬁ (5?pr hi (*'E; - %) - U s1ncw§5] (2-20)
by
Qng = YTD cos u[ 2 (3n)g hg( —;—- —o - U sin o 5=]. (2-21)

The pressure gradients in Equations (2-18) through (2~21) may be replaced

by the more convenient axial gradients by noting that

9P _ 9P ., _
5 = 3y sin o , (2-22)
and
A&+ & B (2-23)
on’r 8n g dy °

From the continuity of mass, the flow across the groove in the n
direction must equal the flow across the land in this direction. Thus it

can be shown that
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h

L 9Py 3, GA Ll T
o (aﬂ c By ( h_ Q) - Usina 5] =
L ( h2 (- & -1y ~Usina Eﬁ ] (2-24)
2u an g & h 6 2
The total flow is given by:
Q= Qp, * Qg ¥ Q. + Q- (2-25)

Using Equations (2-18) through (2-25), the expression for the axial flow

is:
3
1 dP ¢ 1D 6GA 6GA
Q= - W [t (1 -y)(1 +'———) + (1 +--——->(B )(Yt + —0]
12U 9y 1+ t2) Be U]
(l 6GA)
+ U;ﬂD t(l —Y)(BZ— l>[B 62; - 11, (2-26)
1+t V(1 + )
where
_h+ec
B— C
Y b
T a+ b
6GA
b @B ey
1+ ==
t = tan O

The Knudsen number for the viscoseal is defined as

= A -
N 2o (2-27)

where seal radial clearance, ¢, has been selected as the characteristic
system dimension because of the manner of its appearance in Equation

2~26) in relation to the mean free path A.
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Letting
L2 : 66N\ 03y p2 o L
fl(NK) = (1 =-y) (1 + 6GNK) + (L + BK)(B ) (ye® + mE
and
83(1 + 6GNK )
£,(N) = £(1 =) (8 ~ DI B -1,
P+ 6an)
Equation (2-26) becomes
3 UenD
1 9P c~mD ——— £ (N_).
Q=- i £o(N,) + 2, 2K (2-28)
103y ()4 &y LK 20+ t9)

The most useful situation for the viscoseal as a sealing device

A
would be to have Q equal to zero. Taking Q = 0 and %5-% —$3 the

sealing coefficient is defined and evaluated from Equation(2-28) as

6UUL _ fl(NK>
2

. (2-29)
APc fZ(NK)

A=

Further consideration now needs to be given to the slip coefficient
constant of proportionality "G'". Various investigators have developed
expressions for this proportionality constant ranging from 2/3 [21]
to (2 - £)/f [20] where £ is the fraction of their tangential momentum
which molecules give up upon striking a solid boundary. Published
values of f by Kennard [20] range from 0.79 for air flowing over fresh
shellac to 1.00 for air or 002 over machined brass. A value of f equal
to one is taken to be realistic for the flow of gases over machined
surfaces. Thus the value of the slip coefficient G was taken to be unity.

Knudsen number as defined in Equation (2-27) indicates the degree

of rarefication since it becomes large as the mean free path, A, becomes
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o

large. When the Knudsen value value becomes small and approaches zero,
corresponding to continuum conditions, then Equation (2-29) reduces
to the continuum, no slip, solution shown by Stair [16].
3 2 2 »3 2
= BT+ tT) +yt (1 -y)(B” - 1) (2-30)
cont: Ye =) (8% - (8 - 1)

Correction for the Particles Which Do Not

Experience Slip Boundary Conditions

In the previous section where the slip-modified Reynolds solution was
derived, slip boundary conditions were applied to account for the decreased
intermolecular momentum transport at the walls. The analysis attributed
a slip velocity relative to the walls for all the molecules adjacent to
these surfaces. For the case of stationary walls, this implies that
every molecule, on the average, will possess additional flow velocity
due to the slip flow contribution. The preponderance of evidence
presented by Weber [9], Kennard [20], Present [21], and Fryer [22]
indicate that molecules whose last collision was at the wall can have no
slip velocity since such molecules are diffusely reflected from the walls.
Thus only those molecules coming from collisions with other molecules
can possess a slip velocity. A correction will now be developed to
account for those molecules which do not experience slip boundary
conditions due to theilr collisions with the walls. The correction will
be established by determining the ratio of the molecule~to-molecule
collisions to the total number of collisions, or the sum of the molecule-
to=wall plus the molecule~to-molecule collisions. This ratio, o,
represents the fractlon of molecules present which experience the slip

boundary condition.
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The number of molecules striking the wall per unit time and unit

area is [21]

ST

where V is the mean molecular speed. If one considers the unwrapped
viscoseal geometry of Figure 2, page 10, the seal surface area is

approximated by

7D L
cos 0, (a+ b))’

2TDL + 2h

where the right hand term is the surface area contributed by the groove

gide walls. Thus the number of molecule—to-wall collisions in unit

time is
ﬂV h
2 ML{1 + cos ofa + b)]°

The total number of molecule-to-molecule collisions per unit time and

unit volume is [21]

nv
T -

The volume of the viscoseal is the volume of the annular space plus the
volume of the grooves. Thus the total number of molecule-to-molecule

collisions per unit time ig

2 + TOL-h-b .

v )
A 1 (a + b)

[ﬂL(rg -

Since

A A B
(5:2 rl) : ("42 + rz_) (rz r1>5

and, due to the small clearance of the normal viscoseal geometry,
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BN
z

and
g T EL TS

then the expression simplifies to
aV h b

N DL [c+a+b],

Hence, the proportion of the molecules which experience slip is

oo N (14 YE - D]

1 i ’ (2-31)
l/!NK[l Y@ - D] +'§[l + cos afa + b)]
with
-h+¢ - b
B= c Y= a+b
NK =2 and - (B 1.

In the solution of the slip-modified Reynolds equation, it will be
recalled that boundary conditions were not specified on the groove side
walls. Thus it is more in keeping with the-manner of the analysis to omit
the molecule-to-wall collisions which occur on these surfaces and contribute
the h/cos oa + b) term in the denominator of Equation (2~31). With

this restriction, the equation becomes

- — 1 ,
Sl N[ F (B - Ly] T (2-32)

o)

In the analysig of slip flow through long tubes by Weber {9],
Fryer|[22], and Milligan [10], the resulting flow equation can be

manipulated into two separate terms. One of these terms iz the continuum
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Poiseuille flow term while the second term is the slip flow contribution
and results from applicationcof the slip boundary conditions. Equivalent
type terms were obtained by Milligan, Cowling, énd Wilkerson [21] in

the analysis of rarefied flow in a long concentric annulus. For both of
these geometries, the correction for the particles which do not experience
slip was made by multiplying the slip flow contribution by o, since it
is this uncorrected term which implies that all the molecules possess

the additional slip velocity. Thus when O is applied in this manner the
resulting slip contribution term has been corrected for the particles
which experience wall collisions and thus possess no slip velocity. In
the analysis of the slip-modified Reynolds solution for the viscoseal,
the resulting expression of Equation (2-28) does not permit a straight-
forward separation into a continuum term plus a slip term. Hence, the
flow contribution of the slip boundary condition is separated in the
following manner. The total rarefied flow of Equation (2-28) can be

expressed as

Q Q + (Q Q )s (2-33)

total  ‘cont. rarefied = “cont.

where QcO is the continuum flow only and Q is the slip-modified

nt. rarefied

Reynolds solution flow of Equation (2-28). Thus the bracketed right hand
term of Equation (2-33) is the slip flow contribution, and the correction

for the particles which do not experience slip may be made as

Q=20 +0(Q Q ). (2-34)

cont. rarefied cont.

The continuum flow term, Qc@nt , is obtained by taking the limit of

Equation (2-28) as the Knudsen number approaches zero. The resulting

expression from Equation (2-28) may be simplified to
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1 AP eom ) veta - - 2+ 8@ +»a2>]

- oL e [
‘ 3
cont. lzu L (n«L + t ) 63{1 &’Y) e ne

Q

4+ UemD 1 ye (L -Y)(B - D@ - 1) (2-35)

2(1 + ¢t ) B (1 -y) + ¥y

and is identical to that presented by Stair [16]. Letting

_ vila-n@d-n?epda+eh
> B3 (1 =y) + v

and

oyt -8 - 1@ - 1)
6 B3 -y) + v

then Equation (2-34) may be written as

1 Ap c3ﬂD

Q=
12u A (1 + t2)

[of (NK) + C5(l -0) ]

1

+ UeTD

2(1 + t2)

[of (N )+ C (l -03 7. (2-36)

2

Defining

f3(NK) = cfl(NK) + 05(1 -0y,

!

and
fA(NK) = OfZ(NK) + C6(l -0),
then
1 AP c3ﬂD . UcTD
S T 5 By + ———, £, (N, (2-37)
(1 + t7) 2(1L + t7)

In a similar manner to that of Equation (2-29), the sealing
coefficient for the slip-modified Reynolds solution with corrections forv

particles which do not experience slip is




22

Lo e _ f30%)
2 fA(NK)

(2-38)
APce

Specific Molecular Flow Rates

Quite often it is more desirable to express results in terms of
molecular flow rates than in terms of volumetric flow rates as given in

Equations (2-28) and (2-37). The molecular flow, ﬁ, is
n = Qn, (2-39)

where n is the average molecular density defined by the perfect gas

equation of state

P

= (2-40)

n=

with P being the average seal pressure, If one uses the Chapman
relationship [20] to describe the mean free path corresponding to the

average seal pressure, then Equation (2-27) can be written as

. R
- To W 1/2
N = %_= u(2m v T)

K (2-41)

2Pc
With the use of Equations (2-39), (2-40), and (2-41), the previous
expressions for volumetric flow rate may be written in terms of the
specific molecular flow per unit of pressure drop across the seal.
Equation (2-28) for the slip-modified Reynolds solution with no correction

due to particles which do not experience slip is

¢ 2
n Qn . 1/2 ¢
e ), ()
Ap AP 2mKT Ng(l + EZ)L K
r + 1
LD UgTD _

P ART(L + t7)
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where the relationship that
(2-43)

has been written in terms of the pressure ratio, rp, across the seal in
the right hand term. Similarly, the specific leakage flow rate with the

correction for the particles that do not experience slip is

2

n m . 1/2,e°mD -
7= - ( ) £,(N)
AP 2mKT NK(l + tz)L 37K
r_ +1
R BB ). (2-44)
P 4KT(1 +t%)

It should be noted that for a fixed seal geometry and a given gas
at a specified temperature, the specific molecular flow rates of
Equations (2-42) and (2-44) are functions only of Knudsen number, the
speed U, and the viscoseal pressure ratio, rp. As the pressure ratio
becomes high, then (rp + l)/(rp ~ 1) approaches unity and the specific

flow rate is a function of the speed and the Knudsen number only.
Self-Diffusion

The term diffusion, as used here, refers to the molecular transfer
which occurs due to a concentration gradient. If the gas is a pure
unmixed gas, then the diffusion is one of self-diffusion. In their work
concerning low density flow of gases in a capillary, Pollard and
Present [23] suggested that at low pressurés the total transport can be
described by the superposition of the diffusive transport and a drift

component. In his study of flow through long tubes, Weber [9] applied
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the idea of the superposition of a diffusive component, a slip contribution,

and the viscous component. Weber demonstrated that his solutio

=
o
o
w
ot
o
o

correct limiting values for continuum and free molecule flows and adequately
describes Knudsen's data for long tubes [24]. Milligan experimentally
verified, with excellent agreement, the analysis technique of Weber for
rarefied flow in long tubes [10]. Lund and Berman [25] developed
empirical relations for the flow and self-diffusion of gases in both
long and short capillaries by the superposition of the diffusive and
drift components. They developed an algebraic expression which permits
the direct computation of the Weber diffusion coefficient at any pressure
and thus avoided the numerical integration inherent in the Pollard and
Present treatment of self-diffusion. .Lund .and Berman demonstrated the
adequacy of their model for describing self-diffusion and|flow in
capillaries in addition to the flow between flat plates. !Milligan,
Cowling, and Wilkerson [12, 13, and 14] extended the s?perposition analysis
technique of Weber to long annuli with continuing succiessc

In this section, the self diffusion flow in bothfthewgrooves and

annular space of the viscoseal will be discussed and evaluated separately

using the Pollard and Present treatment as applied by Weber,
Annular Space Self-Diffusion

The self-diffusion flow in the clearance space of the rarefied-gas
viscoseal was obtained by considering this flow to be that of a concentric
annulus. The molecular transfer was determined by evaluating the net

number of molecules crossing a plane normal to the annulus. The

evaluation was done by considering separately the molecules which
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come from the outer and the inner walls with the grooved inner wall taken

as being smooth and of diameter D as shown in Figure 1, page 3. The

details of this derivation are presented in Reference [12] and the

procedure used was essentially that given by Weber [9] and is similar to

that presented in Appendix A for the self-diffusion in the grooves.

The

following equations were numerically integrated to obtain the diffusion

contribution in the annular space:

w2
: — dn 2 Rz ¢° !
net outer 2vA Eg‘(rZ - rl) f / [ -
wall Rl 0 0
sin 6 cos” 6 (1 - e"R/NK) dr' d¢ de
. — dn 9 R2 T /2
R em ——— — 1 o
net inner 2VA dy (ry - ry) £ é é (R")
wall 1 "o
2 -R/

sin 8' cos® 8' (1 - e NK) dr' d¢ de'.

The total self-diffusion flow in the annular space is the sum of

(2-45)

(2-46)

Equations (2-45 and 2-46) and may be arranged into specific molecular

flow rate form using

dn _d 2, L 4 n1 AP
dy dy KT KT dy KT L
and
V_Z[ZKT]]./Z
Im
toc obtain
(x, = 1)
N 2 1/2 Y2 T N N _
N 4(WmKT) T NK [SUM (0.W.)+ SUM (I.W.)],

where SUM (0.W.) and SUM (I.W.) designates the numerical integration

of the integrals of Eguations (2-45 and 2-46), respectively.

(2-47)
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Groove Self-Diffusion

The self diffusion flow in the grooves of the shaft was obtained
in a similar manner to that of the diffusive flow in the annular space.
The flow in the groove was determined by considering this transport to be
that of a long groove of rectangular cross section. This neglects any
curvature effects of the helical groove and becomes increasingly in error
as the groove dimensions become of the order of magnitude of the seal
diameter. The development work of the numerical scheme is that primarily
of Cowling and Swicegood [33] and is contained in Appendix A for the
reader's convenience.

As shown in Appendix A, the groove diffusion flow involves the
numerical solution of the following type of equation:

VN h b' h

¢ o - kg dn SO SRS Y
N 5 aE f f f f { r5 (1 -e Kg)
00 00
+ lb—é— (1 - e RRMyoy} €2 4y (andzdg), (2-48)
Yy
where

A

NKg b

is the Knudsen number of the groove flow with the groove width, b',

being taken as the characteristic dimension. Again

T = 2[2K'E[']l/i2
Thm
and
dn _d P, 1 db, 1 ¢
d& d& KT KT d& ~ KT & °
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The relation between the length of

where % is now the groove length.

.
the axial

one groove and
o = 1l m L . L
Ng cos o (a + b) sin o’
where NS is the number of grooves. For a multiple grooved shaft the
total groove diffusion flow is NS times the flow of a single groove.
Thus the total specific molecular flow due to the diffusion is
(2-49)

Q N. sin O
N S 2 .1/2
s (meT) [SUM (Walls)],

3F T T
where SUM (Walls) designates the numerical integration of the integral

terms of Equation (2-48) to include the total walls of the grooves,

reference Appendix A, Equation (A~15).
The total specific molecular flow for the composite solution is

obtained by adding the continuum solution plus the slip flow
contribution after correction for the molecules which do not experience

glip plus the self-diffusion flows in the annular space and the grooves.

Thus
= Eq. (2~44) + Eq. (2-47) + Eq. (2-49).

Eﬁ)composite
In the

(2-50)

It should be noted in summating the flows that the contributions of each

equation must be evaluated at the same physical gaseous state.
development of the groove self-diffusion the Knudsen number, NK , Was

based on the groove width, b', rather than the seal radial clearance,

Thus the corrvesponding value of groove Knudsen number for a given

Co
clezrance Knudsen numbar is

= <
N Ny G e

Kg

(2-51})



CHAPTER III

EXPERIMENTAL INVESTIGATION

The purpose of the experimental investigation was to obtain relisble
performance data of a rarefied-~gas viscoseal and thereby permit an
evaluation of the theoretical models. The investigation was conducted
on a multiple grooved two-inch diameter viscoseal over a wide range of
shaft speeds and gas densities. Data were obtained for both sealing
coefficient performance (no leakage) as well as with net leakage flow.

All rarefied data were obtained using argon as the sealing fluid.

Viscoseal Test Section

The experimental apparatus was designed to investigate viscoseal
performance in the gas flow regime between continuum and free molecule
flow.

The viscoseal test section, Figure 3, consists of an outer housing
with its associated vacuum pumping system surrounding a rotating grooved
shaft. The shaft is a hollow eighi~inch cantilever extension of a high
speed spindle shaft which is belt~driven through an intermediate spindle
by a direct current motor. The drive system is capable of seal shaft
speeds from zero to 35,000 rpm. The speed contrel for the motor is
self-regulating and maintains a selected speed within + 0.1 percent.
Since the entire test sectlon operates under vacuum, a rubbing contact
graphite ring seal is provided whevre the rotating shaft penetrates the

housing. The ring seal is a series B~103032, Type E, manufactured by

28
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the Cleveland Graphite Bronze Division of the Clevite Corporation.
Cooling water and air are supplied at the ring seal end of the spindle
to minimize thermal growth due to the rubbing seal friction under
dynamic conditions. A Conflat vacuum flange is provided between the
housing and its support for purposes of sealing and to provide minor
adjustment capabilities for housing—shaft alignment. Other vacuum seals
are obtained by the use of "O" rings in addition to vacuum sealants for
threaded connections. The maintenance of a high quality vacuum system
with essentially no atmospheric leakage, except at the shaft seal, was
assured by the frequent use of a helium leak detector throughout the
experimental program.

All experimental data were obtained for a single viscoseal geometry
consisting of a grooved shaft inside a smooth housing, Pertinent
specifications of the rarefied viscoseal Number 1 are contained in
Tablie I.

A schematic diagram of the overall experimental test apparatus

is shown in Figure 4, page 32.

Vacuum Pumping System

It was necessary to develep a vacuum pumping system capable of
providing the desired low pressures and gas flow rates. This task was
accomplished by connecting two independent vacuum pumping systems in
parallel to a common reservoir, Figure 4. One c¢f these pumping systems
consisted of a single stage rotary oil-sealed mechanical pump mated
with a three-stage high vacuum oil diffusion pump. This part of the

pumping system was connected to the reservoir with a large diameter




31

TABLE 1

DIMENSIONAL SPECIFICATIONS OF RAREFIED VISCOSEAL NO, 1

Parameter Value

Housing diameter 2.0088 + 0.0003 in.

1]

Shaft diameter, D 2.0005 + 0.0001 in. (cold)

1

Radial mean clearance, c 0.00418 + 0.0002 in. (cold)

]

Seal axial length, L 4,530 + 0.005 in,

Number of groove starts, NS = 16

il

Groove axial width, b 0.03111 + 0.0003 in.

0.03235 + 0.0003 in.

]

Land axial width, a

Groove depth, h = 0.03065 + 0.0003 in.
Groove helix angle = 9,30°

Y = b/(a + b) = 0.4902

B = (h+ c)/e = 8.333 (cold)

1.0017

Aspect ratio, b cos o/h




32

‘snyeaeddy 1sor Teauswriadxy oyl jo weaSerq oTIBWOUDS ¥y 2iIn3Tg

SATEA

9TqBTI30IY]

sdund
WNNDEA O

aATEBA
asoTo-usadg

ma384Ls 9ATI(Q UOTI09S 259

A979WOURH

anTEA eqnl o

SUTT1310IUyl pPoxXopul

ITOAIOSSI
WONDBA >

II® pUE
1938M SUITO0D) —ed

JIIOAI9S91 SES
sanssead uBlsSuUO)

Aﬁ///!l. SWNTOA PO1BIQLITED

®ATBA FFO-INUS

L1ddns
uo8ay

aoaein8ay



33

open-or—-close vacuum valve, The second pumping system was composed of
another single stage rotary oil-sealed mechanical pump mated with a
positive displacement roots blower type vacuum pump. This portion of
the pumping system was connected to the reservoir through a throttlable
high vacuum valve. Through manipulation of the two connecting valves

it was possible to regulate the pumping speed over a suitable range of
downstream test section pressures. The complete vacuum pumping system
was capable of attaining pressures to 10—5 millimeters of mercury with a

blanked-off system.
Instrumentation

The radial alignment of the shaft within the housing was determined
by the use of five proximity detectors manufactured by the Bentley-
Nevada Corporation. These probes were located near either end of the
viscoseal section. When viewed from the shaft drive end of the test
section, the probes of the first set were located at 12, 3, and 6 o'clock
positions, and the probes of the second set were located at 12 and 3 o'clock
positions., The arrangement of the probes permitted the shaft to be
aligned within the housing to a value of eccentricity ratio(shaft
centerline deviation/mean radial clearance) on the order of 0.05. The
probes were also used to obtain dynamic measurements of the thermal
growth of the shaft caused by the graphite ring seal friction when the
shaft was rotating. The output gains of the detector amplifiers were
individually adjusted and calibrated to ensure a linear output voltage

of the probes versus the clearance gap over the necessary range.



Presgure measurements upstream and downstream of the viscoseal
were obtained using both MclLeod gauges and an absolute aneroid type
gauge. The McLeod gauge is normally considered to be a primary
standard [26], but after previous attempts [27] to use thermocouple
gauges and cold cathode gauges, it was apparent that McLeod gauges
were the only instruments capable of giving the desired accuracy and
reproducibility. The McLeod gauges utilized were the GM-100A gauge
manufactured by the Consolidated Vacuum Corporation and are described
in detail in Reference [27].

Temperature measurements of the argon entering the high pressure end
of the viscoseal test section were made early in the experimental
program using a thermocouple. A comparison of the measured gas temperature
with the ambient (room) temperature revealed that the errcr involved in
using room temperature instead of the actual gas temperature was less
than cne percent. Therefore the gas temperature was taken to be 297°K
in all data calculations,

Speed measurements of the viscoseal shaft were made using a magnetic
pickup located near the attachment nut for the drive belt pulley on the
high speed spindle. The pulses from the pickup were registered using
an electronic counter to obtain shaft rpm. The speed measurements were
independently verified using a calibrated hand held tachometer in the
low rpm range and a calibrated strobotac over the entire speed range of
0 te 35,000 rpm.

The molecular flow rate through the viscoseal test section was
determined using a variation of & constant pressure method developed

by J. R. Downing [26] for the measurement of pumping speeds of vacuum




pumps. The technique consists of application of the perfect gas equaticn
of state to known gas volumes at two different time periods. In brief,
the flow measurement is obtained by adjusting the indexed valve of

Figure 4, page 32, to a desired setting and waiting for steady state to
be achieved in the test section as indicatsza by pressure and proximity
probe measurements. The shut-off valve leading from the constant
pressure gas reservoir is then closed and the rate of rise of manometer
fluid in the right hand side of the manometer is observed. With knowledge
of the manometer cross sectiocnal area, the rate of fluid rise, the value
of the calibrated volume, the initial and final pressures in the
calibrated volume, and the gas temperature, the molecular flow rate is
calculated in the following manner:

Consider the flow measurement diagram of Figure 5. Let

VO = calibrated volume including tank and manometer down to
the zero deflection line, "0"

PO = atmospheric pressure

Hl = initial manometer deflection

H2 = final manometer deflection

Am = cross section arez of manometer tube

W = gpecific weight of manometer fluid

From fluid statics:

Pl = Po + 2WH

P2 = Po - 2WH2o

1

The corresponding volumes are:

v

i

1 Vo + HlAm

V2 = Vo - HZAm°



Argon
Shut-off
valve
Indexed throttling
valve
Open to
atmosphere

Calibrated

O (j; volume

\%

To high pressure end
of viscoseal test section

oy by}

0 - zero deflection line

Figure 5. Flow Measurement Schematic Diagram.
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Applying the perfect gas equation of state,

PV = NKT, (3-1)
on a molecular basis to determine the number of molecules within the
system at time (1) and time (2), then,

PV P,V
_ _f1'1 C2%2 _
AN = Ny N2-KT1 ol (3-2)

Assuming isothermal conditions and substituting for the pressures and
volumes, Equation (3-2) simplifies to,
Hl + H

‘ 2
AN = T {Am[PO + 2W(Hy - H2)] + 2va} . (3-3)

The flow measurement system was operated experimentally such that

Hl = Hza
Letting
H= H1 + H2

and At be the time period for the total deflection H, then the molecular

flow rate is

c _ON _  H -
N = T = Foer {AmPO + 2wv0}. (3-4)

In the experimental fabrication of the flow measurement system,
a small, inches of water range, differential pressure gauge was unfortunately
connected to the system within the elements of the calibrated volume.
it was initially felt that the change in volume of the gauge bellows
with changes in pressure was negligible in comparison to that of the
manometer fluid, and all experimental data were obtained in this
configuration. Subsequent investigations revealed that it was necessary

to account for the change in volume of the pressure gauge as a function
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of the measurement system pressure. Letting £(H) egqual the volume
change of the pressure gauge as a function of the manometer head travel

H, then Equation (3-~4) is correctly written as

R S
At AtKT

{H[AmPO + 2wv0] + ZPOf(H)} . (3-5)

The volume relationship between the pressure gauge expansion and
contraction was carefully measured experimentally to determine f£(H).
The following values were determined for the constants of

Equation (3-5):

0.0250 cm® + 5%

An

V
o

W =796 dynes/cm3 + 17%.

114.75 cm >+ 5.0%

The basic premise for the measurement system rests in the fact that
while the pressure in the calibrated volume does change slightly, less
than + 1%, it still remains very close to atmospheric pressure. Thus,
the change in flow rate through the valve is negligibly affected by
the slight decrease in the pressure within the calibrated volume during

the course of a measurement.
Experimental Procedure

Experimental data of two different types were obtained for the
operation of the viscoseal in the rarefied regime. These may be described
as net flow leakage data and sealing coefficient data. The operational
procedure utilizad in gathering the data differed only in respect to

shutting off the avgon gas supply when obtaining sealing coefficient data.
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All data were acquired by the coordinated adjusitment of the gas
supply rate, the vacuum pumping speed, and the seal shaft drive speed
followed by a time stabilization period. Following achievement of
steady state, final readings of the gas flow rate, pressures upstream
and dewnstream of the viscoseal, and the proximity probes were made.
The proximity probes were used to record the seal clearance which
decreases slightly with increasing shaft speed due to the friction of

the graphite ring vacuum seal.
Data Utdlization

The viscoseal performance data for both the net flow leakage tests
and the sealing coefficient tests were correlated versus an index of
the flow rarefication, Knudsen number. As explained in Chapter II,
the mean radial clearance, E} was selected as the viscoseal
characteristic dimension. Thus using the Chapman relationship for the
mean free path, the experimental values for Knudsen number were determined
using Equation (2-41) which is repeated here for clarity,

R

‘ o 1/2
MZWM T)

2P C

=
]
o>
I
o

The mean free path was based on the average seal section pressure

P.+P
P = -3--2«»3 ) (3-6)

The molecular flow rates for the net flow leakage data were calculated
using Equation (3-~5). These data were revised to specific molecular

flow rates by dividing by the pressure drop, AP, across the viscoseal, or
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H{AmPQ % 20V 1+ 2?0 £{H)

(3]
P - D, )ALKT

B N7 . (3-73
r Fo LR

DjZ“

The sealing coefficient data were calculated from the zero net

leakage tests using

A = 6U0L  _ 6uUL . (3-8)

APS? (Pp - Pb)EQ

Investigations Conducted

As previously stated, two types of different but related data were
obtained. These were sealing coefficient performance data where there
was no net mass transport across the viscoseal and net leakage performance
data where leakage flow does occur. Net leakage data were obtained
over the maximum possible range of rarefication for shaft speeds of zero,
5,000, 10,000, and 30,000 rpm. Corresponding rarefied sealing coefficient
data were also cbtained over the maximum range of rarefication at these
same shaft speeds. These data are presented and discussed in Chapter IV
and are tabulated in Appendix E.

In addition to the rarefied investigations, a supporting continuum
sealing coefficient investigation was conducted at atmospheric conditions
using air as the sealant fluid. This continuum investigation is summarized

in Appendix C.
Experimental Uncertainty

4 detailed analysis was performed to estimate the propagated

uncertainty in the final performance parameters based on the individual
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uncertainties of all measured variables. The analysis was performed

using standard statistical techniques after postulating a normal distribution
in the uncertainty of each variable. This method of analysis assumes all
errors are random in nature. Considerable effort was expended to minimize
any error of a systematic nature.

The propagated uncertainties, in general, are not constant and vary
with the degree of rarefication. The uncertainty in the specific
molecular flow rate, ﬁ/AP, of Equation (3-7) is + 5.1 percent at an
Inverse Knudsen Number of 27 where the calibrated volume, Vo’
contribution is 84 percent of the total. The uncertainty in the specific
molecular flow rate increases to + 8.9 percent at an Inverse Knudsen
Number of 0.50 where the uncertainty in the differential pressure, AP,
contributes 72 percent of the total. The ability to determine the
Inverse Knudsen Number of Equation (2-41) is estimated at + 4.8 percent
for 1/NK equal to 27 and increases to + 5.7 percent for l/NK equal to
0.50. The propagated uncertainty estimate in the sealing coefficient,

A, of Equation (3-8) is insensitive to the degree of rarefication and
remains at essentially + 9.6 percent. The uncertainty in the radial
clearance, c, contributes approximately 99 percent of the propagated
uncertainty estimate for A. It should be noted that the clearance
uncertainty is controlled by the ability to establish the diameters of
the seal shaft and housing and not by any limitations of the proximity
prcbe system.

The uncertainty of the clearance Reynolds number of Equation (C-1)
in Appendix C has been estimated at + 4,9 percent where the radial

clearance contributes approximately 94 percent of the total.
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All uncertainties are stated to a confidence level of 65

percent.




CHAPTER IV
RESULTS AND CONCLUSIONS

As stated in Chapter I, this study of the rarefied-gas viscoseal
was initiated to expand the basic understanding of its operation under
low density conditions, A combined analytical and experimental investi-
gation was selected as the approach to the problem solution. The relation-
ship between these two phases of the research program and the results and

and conclusions of this study are discussed in this Chapter.
Net Leakage Investigation

A net leakage flow condition from the high pressure end to the low
pressure end exists in the viscoseal when the viscous pumping action is
insufficient to overcome the pressure induced and diffusive flows in the
grooves and through the annular clearance space, The experimental
data for these experiments are shown in Figure 6 for shaft speeds of
zerc, 5,000, 10,000, and 30,000 rpm. These data are presented as the
specific leakage rate in molecules per second and micron of pressure
difference across the seal versus Inverse Knudsen Number. Theoretical
curves are shown to permit comparisons of the experiments and theories.
In general, the developed theoretical models predict the trends of the
experimental data; -however, some deviations between the theories and

experiments exist in certailn regions.
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One test for any theoretical wiscoseal model 1s its ability to
predict the leakage flow for the non-rotational shaft condition. 1In
this case the speed sensitive terms of Equations (2-42) and (2-44) go
to zero and only the pressure induced terms remain. For the static case
it is obvious that the experimental data falls below the theoretical
curves for continuum valués of Inverse Knudsen Number approaching 100.
in this regime no differences between the theoretical equations exist,
and these data are really a test of the continuum model of Boon and Tal
since rarefied effects are negligible. In the basic Boon and Tal model
it will be recalled that boundary conditions are applied te the moving
top wall and to the bottem of the groove but not to the groove side walls.
Depending on the relation of the groove width to its depth (groove
aspect ratio), this omission may or may not be of significance. When
the groove is very wide in comparison to its depth, one would expect
the omission of the boundary condition on the side walls to be of minor
importance. As the aspect ratio decreases and approaches unity, however,
the effects of the side walls become of the same order of magnitude as
the top and bottom walls of the groove and should be considered. The
aspect ratio of the experimental geometry is essentially unity and the
difference between the theory and the experimental data in the continuum
regime is largely attributed to the omission of the side wall boundary
conditions.

As the flow becomes more rarefied, as indicated by the decrease in
Inverse Knudsen Number, the agreement between the theory and the
experimental data is improved although the theoretical predictions remain

high. The infliuence of the groove side wallg would be expected to be of
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g greater magnitude under continuum conditions as opposed to rarefied
conditions. Under continuum flow the fluid adjacent to the walls has a
relative velocity to the wall of zero while under rarefied conditions the
fluid velocity in the vicinity of the walls is finite being the '"slip
velocity."

Figure 6, page 44, shows the theoretical solutions for the static
rpm case., The solid line solution, Equation (2-42), indicates the flow
obtained by application of the slip boundary conditions to the Reynolds
equations. The second solution, Equation (2-50), indicated by the dashed
line, is the composite solution obtained by correcting the slip-modified
Reynolds equations for the number of molecules which collide with the
walls and consequently cannot experience slip boundary conditions,
Equation (2-44), and then adding the self-~diffusion flows both in the
grooves and the annular space. It may be observed that there is
essentially no difference in the two solutions until the Inverse Knudsen
Number decreases below a value of approximately 3.0. Although the
difference in these two static solutions increases with increased
varefication the composite solution is only 15 percent higher than the
sclution of Equation (2-42) at an Inverse Knudsen Number of 0.10. Table
I1 presents a comparison of the two solutions and permits an examination
of the contributions to the composite solution. Examination of the
tzble shows that the diffusion flow contributions in both the annular
space and the sixteen grooves are only one percent of the total composite
flow at an Inverse Knudsen Number of 7.0 and decrease rapidly with
decreased varefication. At an Inverse Knudsen Number of 0.01 it can be

observed that the diffusion contributes 92 percent of the total composite




TABLE II

=14
NET LEAKAGE SOLUTLONS X 10 14 FOR SEAL NG. 1 AT ZERO RFM

N/AP IiI/AP Composite Solution — Eq. (2-50)
Cont. + slip Cont. + slip  Annulus Groove Composite
1/NK No. Paf!;° Corr, Parto~ Co;‘r° Diffusion Diffusion‘ Flow
Eq. (2-42) Eq. (2-44) Eq. (2-47)  Eq. (2-49) Eq. (2-50)
1% 1072 2.22 0.198 1.92 0.48 2.60
3 x 1072 2.24 0,514 1.69 0.42 2.62
7 % 1072 2.30 0.951 1.41 0.34 2.70
1x 107t 2.33 1.18 1.30 0.30 2.78
3¢ 107t 2.58 1.99 0.87 0.17 3.03
7% 107" 3.08 2.78 0.57 0.086 3. 44
1 x 10° 3.45 3,23 0.45 0.053 3,73
3 x 10° 5.92 5.84 0.19 0.022 6.05
7 % 10° 10.8 10.8 0.090 0.0096 10.9
1 x 10 14.5 14.5 0.064 0.0068 14.6
3 x 10t 39.2 39.2 0.022 0.0023 39.2
7 x 100 88.4 88.4 0.0094 0.0010 88.4
1 x 107 125.0 125.0 0.0065 0.0007 125.0

1%
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gsolution and the flow is essentially free molecular, The moderately close
agreement between the rather complex composite soluticn of Equation (2-50)
and the more simple solution of Equation (2-42) over the entire range of
rarefication for the viscoseal is comparable to that obtained similarly
for flow through both long tubes and annuli.

Net leakage data for the three dynamic operating speeds of 5,000,
10,000, and 30,000 rpm are also shown in Figure 6, page 44. A single set
of theoretical curves is shown for these data since there is negligible
difference between the two solutions previously discussed in this rare-
fication regime. Table IIL presents a flow comparison tabulation for the
5,000 rpm solutions since this speed has the most rarefied conditions of
the three. The difference between the 5,000 rpm dynamic solutions cannot
be distinguished on Figure 6. Examination of the values of Table III shows
that the difference in the two solutions is approximately one percent at an
Inverse Knudsen Number of 10.0. While the trends of the theoretical
solutions of Equation (2-42) for the dynamic cases do match the experimental
data, ccnsiderable differences between theory and data do exist. Based
on the degree of agreement that existed between theory and experiment
for the zero rpm case, the data for the dynamic tests indicate that the
flow predictions of the rotor induced terms of Equation (2-42) and Equation
(2-44) are in excess of the actual rotor induced pumping obtained.

The specific molecular flow rate equations for the dynamic speeds are
pressure ratio sensitive as may be noted by examining Equations (2-42)
and (2-44). The theoretical curves presented have been matched to the

measured experimental pressure ratios.
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The propagated experimental uncertainties in N/AP and 1/N, discussed
JAN
in Chapter IIIL are sufficiently small to preclude their display on Figure

6, page 44, their being of the order of the data symbols.
Sealing Coefficient Investigation

Performance of a viscoseal at the particular condition for which
there is no net mass transport across the seal represents a very special
operating condition but one of particular interest to many investigators.
Vreeburg [1], Baron [4], King [6], Hodgson and Milligan [7], Boon and Tal [15],
and Stair [16, 17] have all included analyses and/or experimental
investigations of viscoseal operation at this condition. In Chapter II
after developing the slip-modified Reynold's solution given by
Equation (2-28), the flow was set equal to zero and the sealing coefficient

parameter

_ 6uUL
A= 2

APC
evaluated as shown in Equation (2-29). Sealing coefficient data were
obtained over the maximum possible range of rarefication for shaft speeds of
5,000, 10,000, and 30,000 rpm and are shown on Figure 7 together with
corresponding theoretical curves of Equation (2-29). The agreement between
theory and experiment is fair; however, significant deviations do exist.
The theory does predict the correct trend of the sealing degradation as
conditions become more rarefied, however, the theory is optimistic in
predicting lower than measured values of sealing coefficients., It may be
observed that the experimental data indicate that the sealing coefficient

parameter becomes speed sensitive as the sealant gas becomes rarefied,
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and this speed dependence is not predicted by the developed theory of
Equation (2-29). The sensitivity to shaft speed for the rarefied-gas
viscoseal is alsc unique from that of operation in the laminar continuum
regime where the sealing coefficient is independent of shaft speed [7, 18].
This continuum characteristic may be seen by noting the asymptotic behavior
of the experimental data of 5,000 and 10,000 rpm as the continuum regime

is approached (l/NK > 100). These data may be compared since the mean radial
clearance is essentially the same for both speeds. A separate theoretical
curve is shown for the 30,000 rpm data due to the difference in the mean
radial clearance.,

Figure 7 also shows the average sealing coefficient value for the
viscoseal operating at laminar continuum conditions using atmospheric air
as the sealant fluid. This continuum data agrees well with the rarefied
data extrapclated to this regime. As pointed out in Chapter II, the
rarefied-gas sealing coefficient theories of Equations (2-29) and (2-38)
reduce to the basic Boon and Tal theory of Equation (2-30) as the continuum
regime is approached. Again the theoretical predictions are optimistic
in comparison to the measured data. Appendix C contains a more detailed
account of the laminar continuum investigations.

Examination of the theoretical solution of Equation (2-29) reveals
that under very rarefied conditions the model can predict a seal pressure
differential, AP, which may exceed the magnitude of the upstream or fore
pump pressure. This sclution would imply a negative absolute value for the
downstream pressure, a conditlion which cannot occur in reality. A Llimiting
criteria to be applied to the theoretical solutions to avoid this condition

is predictable by considering the variables involved. Figure 7 presents the
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sealing coefficient, A, versus the Inverse Knudsen Number,leKe As

stated in Chapter III, Kanudsen number
u(2ﬂ§g T)l/2
= M
2Pc

=2
e

is based on the average pressure in the seal

= PT + Pb } 2PT - AP )
‘ 2 2

As the downstream pressure approaches zero, then AP approaches the

upstream pressure and for this limiting condition

— N
P

B

Thus, the Inverse Knudsen Number variable may be written as

AP¢

M (2‘ITR0 T) 1

M

("1/NK) = 75 .

The Sealing Coefficient variable is defined as

no=
APe
Solving for AP in the Inverse Knudsen Number relationship and

substituting this intc the above equation gives the limiting functional

relationship

UL } 1 ) (4-1)

For a given seal geometry, gas, temperature, and operating speed, the
limiting seal coefficient function varies inversely with the Inverse

Knudsen Number, 1/N On a logarithmic plot such as Figuve 7, this relation

K




54

will plot as a straight line with a slope of minus unity. Points which
fall above and to the right of this line are possible while those which
fall below and to the left are not possible in that a negative absolute
pressure downstream is implied. The limiting relation of Equation (4-1)
is speed sensitive and thus the limit condition can be established for each
selected shaft speed. Limit curves for speeds of 5,000, 10,000, and 30,000
rpm from Equation (4-1) are shown on Figure 7, page 51. The experimental
sealing coefficient data agree well with these limit curves and all points
fall within the "possible''regions. In addition, the speed sensitivity of
the experimental data agrees with that indicated by Equation (4-1). It
should be noted that the limiting function of Equation (4-1) results from
a limit condition of the variables involved and applies to any and all
viscoseal analyses using these variables.

In view of the limiting functional relationship just established,
the theoretical curves of Equation (2-29) on Figure 7 are dash-lined
pass the applicable limit curve for a particular speed to show the
solution trends and trends only. Theoretical sealing coefficient
predictions are not presented for the composite flow solution. There is
(negligible.difference between the composite sealing coefficient solution
and that predicted by Equation (2-29) at the degree of rarefication that
exists for the sealing coefficient data. This is in agreement with the
observation of Table II1I for the net leakage solution for 5,000 rpm.

The propagated uncertain in A is typically shown on Figure 7 by the
vertical bars on selected data points. The uncertainty in 1/N, is of

K

the order of the data symbol width.



The relationship which exists between the net leakage flow of
Figure 6, page 44, and the sealing ccefficient data of Figure 7,
page 51, can best be shown by reference to Figure 8. Here is shown the
family of net leakage curves that exist as functions of the seal pressure
ratio for a fixed shaft speed as predicted by Equation (2-42). The
curves progress to the left for increasing values of pressure ratio until
the (rp + 1)/(rp ~ 1) factor in the speed sensitive term of the equation
approaches unity. When the family of net leakage flow curves are extended
to the zero net flow condition via the broken graph, a corresponding sealing
coefficient condition may be indicated for each of these pressure ratio
curves, Operating the rarefied viscoseal at '"negative' conditions of
net leakage flow is simply another way of saying the viscoseal has now

become a positive flow pump.
Comparisons with Data of Other Investigators

As pointed out in Chapter I, relatively few experimental

investigations of rarefied—gas viscoseal performance have been conducted.
Experimental data cbtained by other investigators are presented in the three
following figures. Also presented in these figures are the results obtained
by the theoretical model, Equation (2-29), which has been developed. The
experimental data of these other investigators are in sealing coefficient

or equivalent form, and as previously stated, there are essentially no
differences between the theoretical predictions of Equation (2-29) and (2-50)

over the pertinent rarefication range.
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Figure 9 presents the data of Hodgson and Milligan [7] using
atmospheric air as the sealant fluid. These data are in the continuum
regime at an average Knudsen number of ﬁk = (0.00147. The experimental
results indicate a slightly poorer sealing coefficient value than that
predicted by the theory but agree within the tolerances in sealing
coefficient which result from the geometric uncertainties associated
with the seal dimensions [7]. The degradation in seal performance as
the density becomes lower is indicated by the theoretical curves.

In Figure 10 the data of Baron [4],also for air, are compared with
the theoretical predictions from Equation (2-29). Baron's sealing
parameter is related to the sealing coefficient in the manner shown con
the ordinate. The data of Baron, while more rarefied, ﬁk = 0.014,
than that of Hodgson and Milligan, are still within the continuum regime.
The theory certainly predicts the trends of the data although there is a
significant deviation between theory and experiment. Again the theory
is optimistic in its prediction of the viscoseal performance.

In Figure 11 the data of King [6] for air are compared with
theoretical predictions. Some of these data are in the non-continuum
regime. As shown in the figure, the theory indicates that non-continuum
effects will occur for Knudsen Numbers greater than 0.01 in the form of a
decrease in sealing performance. The data also indicate this same trend
although there is a significant deviation between theory and experiment.
The Limiting function of Equation (4-1) is alsc shown for a shaft speed of
14,000 rpm and raises a question concerning the validity of one of King's

data pelonts. Similar to the other comparisons, the thecry is optimistic

s
=
frrer
£
U]

prediction of seal parformance.
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Final Conclusions

At the close of this study it 1s desirable to enumerate some of the
major conclusions of the investigation conducted. While a number of these
have been discussed in the preceding material, where applicable, it is
profitable that these be reviewed and generalized comments presented.

The developed theoretical models predict the trends for both the net
leakage and the sealing coefficient data, however deviations of sufficient
magnitude exists to prevent their indiscriminate use, A major source of the
difficulties with the theory is the basic limitations of the laminar
continuum model of Boon and Tal which was selected as the beginning point
for the rarefied analysis. The continuum data of Figure 6, page 44,
show rather conclusively that the model of Boon and Tal does not adequately
predict the flow when dealing with grooves having the width of the same
order of magnitude as the depth. While it is realized that the viscoseal
groove geometries utilized for purely continuum sealing are usually very
shallow, teo the author's knowlgdge, the need-for restricting the model
usage to grooves of high aspect ratic has not Béen emphasized. It is
anticipated that the developed rarefied models will more closely predict
the seal performance as the aspect ratio becomes larger although dats are
not presently available to substantiate this. A thecoretical laminar
continuum model which includes the groove side wall boundary condition is
needed and is presently being pursued by Patterson [8]. With this improvement,
the use of slip boundary conditions coupled with the correction for
particles which do not expervience slip plus the addition of the self-

diffusion flows in the grooves and the annular space still appears to be




the mogt fundamental approach for obtaining a theoretical rarefied solution.
It should be borne in mind, however, that while this is the more rigorous
approach, the tremendous increase in complexity and time of obtaining this
composite solution appears to buy only slight improvements in the theoretical
model based on the informaticn at hand. From the viscoseal designer view-
point, the use of the relatively simple rarefied model obtained by application
of slip boundary conditions to a proper continuum model does provide an
acceptable method of including moderately rarefied effects. When this is
coupled with the limiting function for the sealing coefficient parameter,
this does provide a practical design tool for establishing an upper limit
for rarefied-gas viscoseal performance.

This study has amply illustrated the real need for more detailed
experimental performance data on rarefied-gas viscoseals to provide a test
of the developed theoretical models. These experimental programs need to
include not ounly sealing coefficient measurements but alsoc net leakage
investigations as these tests can provide real insight into the model.
Tests of sealing coefficient do not provide the detailed wvisibility into
the model that is afforded with the net leakage type of experiments, The
sealing coefficient parameter, while of considerable interest, does constitute
a very special operating‘cdﬁdition for the viscoseal and one that is not
often realized in applicatiocn.

As previously stated, this iovestigation was a portion of "A
Fundamental Study in Low=Density Gas Dynamics,'" supported at the University
of Tennessee by the Natlonal Aeronautics and Space Administration. Continued
investigations of rarvefied-gas viscoseals, both experimentally and

analytically, are in progress.
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APPENDICES




GROOVE SELF DIFFUSION

As stated in Chapter II, the diffusive flow in the shaft groove was
obtained by considering this flow to be that of a long groove of rectangular
cross section. This considers the helical groove to be unwrapped and
neglects any curvature effects. Thus this section presents the self-
diffusion flow through a long, straight, rectangular groove. The
development of this technique is patterned after the work of Weber [9]
and was primarily done by Cowling and Swicegood [33].

Consider the long groove of rectangular cross section of Figure 12,
Let dS' be a small element on the surface of the groove side wall-“and dS
be a small element in a counting plane normal to the groove axis. The
number of molecules which leave dS' per unit time in the direction of the

element is shown by Present [21] to be

-d &W = nVdS' cos ©' %% s (A-1)

where dw is the elemental solid angle subtended by dS at the center of dS'
and the minus sign indicates flow in the negative & direction. Let r be
the length of the line joining the centers of dS and dS' and ©' be the
angle between r and the normal to dS.

0f those molecules leaving dS' in the direction of dS, some will
travel the entire distance without experiencing a molecular collision.

The probability of a molecule traveling a distance r without a
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collision is ewtjd [21], where A is the mean free path. Thus of the

1

total number of molecules which leave dS' per unit time in the direction

of dS, only

-d?ﬁ = nvds' cos 6" dw e_r/A

W 4w (A-2)

arrive there without experiencing an intermolecular collision. From

geometric considerations,

dw = dS cos ©
2

T
dS = dndz
cos O = r2 + 52 - d2

s 2rE
o - 2 4 (b -m2 - 2

cos 22 (b" =)
ds' = dz'dg.

Using the above equations, then Equation (A-2) may be written as

2: nV (dndzd&)dz" . 2 2. =r/A

~ay,, = 2 (22 + (b' -m2 - £210e% + &2 - a®1e7F N, (a-3)
l16me E(b' -n)
But
2 -2 = b -)”
r2 - d2 = 52
Thusg
de&w _ ﬁV(dndzdg)dz‘ (b —myE e T/ (A—i)

4y
Consideration will now be given to the number of molecules which

pass through dS directly after experiencing a molecular collision somewhere
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3 co 4 , ; .
along r. Let d Ng be the number of molecules per unit time from this

source of flow through dS. If d7 is an elemental volume on ¥, then
nv dt/A is the molecular collision frequency in dt [21]. Of this number,
dw2/4ﬂ leave dT in the direction of dS where dw, is the solid angle
subtended by dS at the center of dT. For these molecules leaving d7
in the direction of dS, the probability is e-e/A that they will travel
to d8 without a ccllision where € is the distance from dT +to dS. Thus

- dw
3 nV 2 e-a/ka (A=5)

g A 4m
From geometric considerations,

_dS cos ® _ dndz &

2 E2 52 r
dt = szdw'de,
but
ds' cos o'
¥
dw 5
T
and
1 1
dt = €2 dSr ;os e de
r
or
e’ ' -n)
dTt =;§ (dz'di)————r de,
so that
. 7 (I -
- d3Ng - 2 ' =ME 4ndzasydz'] e e, (A=6)
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<

If integration is now performed for O < € < r, then the molecules
passing through dS following a collision in all the sub-volumes drt

along € can be found as

e 7 [ r -
~a% = L BT SMEngsagydz [ ne /e, (A-7)
g 4T r4 o

To integrate Equation (A-7) it is necessary that the molecular density,

n, be known as a function of £. It is assumed that n can be expressed as
dn
n = no + g(dg)a (A—8)

where n is the density in the counting plane and (dn/df) is taken as
constant. It is further assumed that density changes in the n and z
direction are negligible. Since

£ = € cos 6,

then the integral of Equation (A-7) can be evaluated as
r
r

f ne_g/k de f (n + € cos ©
0 0

“E/Kde

dE

Al - e’rﬁ\)(n0 + A cos 6 %%) - Acos © —=r dg —r/k‘

1]

Thus Equation (A-7) may be written as

—dzﬁg = %ﬁ\ihl;iiﬁé;(dndzdg)dz' {(1-e r/A )(n + XA cos © di
~ cos © EE re —r/X} (A=9)

The total number of molecules passing through dS in the negative £
direction from along the ray "r'" is obtained by adding Equations (A-4)

and {(A-9) to obtain
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2 2

9 . .

d™N =dN.,+dN ,

!?;w W g

which simplifies to

—af| = —Y ' -n) € (dndzdE)dz' {n_ +Acos 0 S2(1 - e7F/M)}, (a-10)

4 o d§
E~ 4Ty

where

cos © = é-e

T

Equation (A-10) expresses the total number of molecules flowing
through the counting plane in the negative & direction. To find the
molecules flowing through the counting plane in the positive £ direction
it is necessary to redefine the molecular density as

dn
n=n - €~€g .

With this revision and a change of sign in Equation (A-4), the

total molecular flow in the positive & direction is obtailned as

\Y dn —f/k)}a

d°N = 7 (b' -n) & (dndzd&)dz' {no - A cos 6 Ez(l - e (A-11)
g+ 4mr
The net molecular flow through the counting plane can be obtained
by adding Equations (A~10) and (A-1l) and simplifying to
.2 (' -mb" N
2° _ _ Vg7 (dndzd&)dz' ,dn Kg,, _ _~R/N _
d NNET 27 (dg> rs \1 e Kg>! (A 12)

after letting

T
R = 57

Now referring to Figure 13, it is possible to write Equation (A-12)

to calculate the flow from both side walls of the groove as
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2 - Vel (andzag)dz' dan B TP Mg, (1 - oM
NET 2m g 5 we
nb'N
+ —-~%5— (1 - ¢/ Neg)) (A-13)
ry
where
RR = rr/b'.

Equation (A-13) does not lend itself to closed form integration,
so the solution must be obtained numerically. Equation (A-13) can be

rewritten as

=2
2. _ _ VE“(AnAzAE)Az' dn (' -mb',, _ -R/N
d Nygr = o az kgl s (1-e " Kg)
' -
+ th (1 -e RR/NKg)} s (A-14)
rr

where

r =[€2 + (b' -n)2 + (z' - 2)211/2

ry = [Ez + n2 + (z' - 2)2]1/2

Computation Procedure

The molecular flow indicated by Equation (A-l4) was evaluated in
the following manner. As shown in Figure 13, let each differential

flow, DFLOij, from the two side walls to an "i" element be summed along

a constant "j" row for 1 < k < N, and let RFLOWij represent that sum. So

N
RFLOW,, = L DFLOD\Lka
lJ kzl J

Then the total flow to an "i" element is given by

N~ =

FLOW, , =
L

RFLOW,. (i = constant).
3 1]

3 1



The next step in the solution is to calculate the total flow to each
differential "i" element along the bottom row, (i,1). Because of
symmetry, it is only necessary to compute this flow over one-half of
the flow channel width.

Next, to reduce the computer execution time, certain geometrical
similarities can be found to reduce the number of calculations. For
example, if any FLOWij could be found by adding and subtracting certain

RFLOWij to RFLOW, then the number of calculations can be drastically

i1’

reduced. Figure 14 illustrates a method for determining this similarity.

From Figures 13, page 74, and 14 note that FLOWi is very similar

2

to FLOW,1 In fact, the only difference is the dotted RFLOW's shown.

1°
Thus 1t can be seen that

FLOWi = FLOWi + RFLOWi - RFLOW

2 1 2 iM’

In a more general sense, since FLOWi may be obtained from FLOWi2 in a

3

gsimilar manner, then

+ FLOWi . — RFLOW,

FLOW, ;= FLOW, ,_ y IMt 2

j~1
Now this FLOWij can be summed over each element for one quadrant of
the channel cross—section and multiplied by 4 to obtain the total
diffusive flow from the channel side walls.

For a channel of square cross-section with a uniform molecular
concentration across the channel, the flow from the bottom and top
walls is the same as the flow from the groove side walls. Thus the
total diffusion flow through a square groove is given by

L{Z M/2

N = 8 z {
i=1 3

B

FLOWij)n (A-15)

oot
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M

FLOWi2

FLOWil

RFLOW FLOW,
Tt il

Figure 14. Numerical Computation Similarities.
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Commentary

The solution for the self-diffusion flow presented in this section
has been recently utilized by Milligan and Patterson [28] in a study
of rarefied gas flow through long square tubes. Their experimental

results substantiate the diffusive analysis presented.




APPENDIX B
KING'S ANALYSIS OF THE RAREFIED-GAS VISCOSEAL

The analysis of the rarefied-gas viscoseal by King [6] is unique
in its manner of treatment of the viscous induced flow in the grooves
superimposed with the pressure induced flows in both the grooves and
the annular clearance space. The rotor induced flow in the grooves
is determined by considering viscous flow without a pressure gradient
in a rectangular channel with one wall moving at the peripheral speed
of the rotor. The pressure induced leakage flows of the grooves and
the annular space are established using the Poiseuille viscous tube
flow equation modified with slip boundary conditions after having
assumed these flows could be represented by use of the hydraulic radius,

r in the tube flow equation.

H’
King evaluates the net leakage mass flow rate in the seal as
Mgy = Neip Mg - Nghp, (B-1)
where

m, = pressure induced mass flow in a groove

ﬁd = pressure induced mass flow in the annulus
my = rotor induced mass flow in a groove
NS = number of grooves

The terms are evaluated in the following manner.

Groove Flow

King assumes that Poiseuille flow in a tube when modified using

slip boundary conditions at the walls is applicable to the pressure
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induced flow through use of the hydraulic radius in place of the tube
radius. The Poiseuille solution for tube flow is given by Kennard [2Q]

as

pTY
© .t dP & -
my =g ag (Lt A rt)’ (B~2)

where ¢ is the coefficient of slip as defined by Kennard in evaluating
the slip velocity relative to the wall as

- du
u, =~ % -

The coefficient of slip is taken from [26] as

z = (constant) A = 1.375 A.
Using the perfect gas equation of state for the density, Equation (B-2)
is rewritten in terms of the cross sectional area and the hydraulic

radius as

2
MAr ;
~ H dp 5.5 A
oy = 8R T Pag A+ Ty )- (B-3)

Annular Clearance Flow

Similarly to the pressure induced flow treatment in the groove,
King treats the annulus flow by a modified form of the Poiseuille flow

solution. The annulus flow, m , will differ from the groove Equation

d
(B-3) only in terms of the hydraulic radius, the cross sectional area,

and the pressure gradient. The ratio for the two flows was defined for

Ns parallel grooves as

L =5 (B-4)

(s34
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o 2. 4z ., dp’
A (I‘H;) (L + 1“];1 JP Fi
6 = -~ L el &
oo L2 4C dap ;
(NS)ACrH) (1 +-;;)P T

(B=5)

where the primes designate the annulus terms. King considers the pressure

at either end of the grooves and across ny thread lands in the test

section must be equal so that

% a(n,)

dp ~ 22, dp!
i Py &b = [ 7P 5 9L
0 0

which he uses to approximate that

, '
P
ar Yol
p &2 g

n_n

where "a" is the axial land width as shown in Figure 2, page 10.

AT (2 )2+ 2y
H r
6 — H

- 2 4t
(N A(x )" + ;;)a(ng)

The terms of Equation (B-6) were evaluated as follows:

A' = (D + c)c

2 ° cross sectional area

gt wetted parameter - ¢
[ —
sin O
A = hb'
H  (h+b")
L. L
L (' + a)
W - A

K c

Thus

(B-6)




where b' is the groove width normal to the groove walls and is related
to the groove axial width b of Figure 2, page 10, by

b' = b cos a.
Using the above equations,

m(D + cYeS(h + b )2(b' + a)[1 + 5.5 N..]
° = TV (B=7)
. i3 c
NS sin a(hb')"a [1 + 5.5 NK AET ]

Rotor Induced Flow

In his evaluation of the rotor induced flow King considers only
the viscous terms of the Navier—-Stokes equations and selects for his

model

Su4 o, (B-8)

32u 32u
nZ g2

This equation is solved subject to the boundary conditions, reference

Figure 2, page 10,

u=0atn=20
u=20atn=>hb'
u=0at z=h+c
u=1U~cos 0at z =0

It should be noted that these are continuum type boundary conditions
and do not include any rarefication effects. Using separation of
variable techniques, King obtains the groove velocity distribution and

integrates over the groove area to obtain the average rotor induced

velocity
, , + 1y bty
~ 80U cos 0 b’ © 1 cosh [(2n + 1) o | 1
v . 3 ' m(h + c) b
(h+c)y 7™ n=0 2o+ 1) sinh [(2n + 1) v ]



83

. [»] PR " i
G = U cos G 2 [SUM (K)]. (B-9)
(th+c)m

The rotor induced flow is thusly obtained as
m, = pAU = % AG . (B-10)
Net Flow

The net leakage flow is summated in Equation (B-1) and, using

Equations (B-2), (B-4) and (B~10), may be expressed as
2

AMr“N N AMu
. _ : H's 5.5\ dP s _
Mgy = (L +6) Ty [1+ - 1P 35 R T P. (B-11)

To find the maximum pressure differential across the seal, King sets

the net mass flow to zero. Then letting

dp AP AP sin O
d [ L ’
SuLu
P - . (B-12)
max  sin (1 +6}r2 [1 + éié&]
H rH

The sealing coefficient as defined in Equation (2-29) may now be

evaluated after substituting for the hydraulic radius, > as

1
312 tan a(h + ¢)hZb' (1 + &)[1 + >+ Nge (B + 1)y
Y

A= 5 5 . (B-13)
32 ¢“(h + b")T[SIM(K)]

Commentary

The sealing coefficient as computed using Equation (B-=13) is shown

on Figure 15 together with representative examples of King's experimental
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data and the solution of Equation (2-29). As may be observed, the
trends and both theories are remarkably similar and both solutions

have significant deviations from the data. A primary motivation for
the close examination of King's efforts was the excellent agreement
between theory and experiment shown in References [6] and [29].
Numerous efforts to duplicate this agreement have been unsuccessful.
The reader is cautioned that numerous errors are present in both
References [6] and [29] of King's work and were confirmed generally but
not specifically by the personal correspondence of the author [30].

To the best of the author's knowledge the equations are correct as

presented herein.




APPENDIX C

CONTINUUM INVESTIGATION OF THE EXPERIMENTAL

RAREFIED-GAS VISCOSEAL NO. 1

In order to obtain experimental data over the widest possible
rarefication range, it was elected to conduct a continuum sealing
coefficient investigation. Although this was not within the original
research scope, it was felt that these experiments would add supporting
evidence for the rarefied tests. This goal was accomplished by the
data shown on Figure 7, page 51L. In the process of obtaining this
information, certain characteristics of a continuum viscoseal were
uncovered that have not been previously reported and are contained in
this appendix.

The continuum sealing coefficient experiments were conducted by
removing the graphite ring seal and the vacuum pump connections as
shown on Figure 3, page 29, in order to permit atmospheric pressure
conditions to exist at the downstream location. The high pressure end
of the visccseal test section was maintained as a sealed cavity and was
pumped to an equilibrium pressure above atmospheric during the dynamic
tests. The pressure drop across the viscoseal test section was measured
using an inclined manometer. Shaft speed was measured using an electronic
counter as discussed in Chapter IIIL.

Figure 16 presents the sealing coefficient data versus the

clearance Reynolds number where

- PUc 1
Rec T (C~1)
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The theoretical solution of the developed rarefied Equation (2~293,
which reduces to the Boon and Tal solution of Equation (2-30) for
conntinuum conditions, is shown. It is observed that the predictions

of the equation are optimistic in comparison to the experimental data.
The experimental sealing coefficient data has a rather bell shape with
the maximum value of A, minimum sealing performance, occurring at a
Reynolds number of approximately 350. The sealing coefficient decreases
with increases in Reynolds number above 350 due to what Stair [17]
attributes to the onset of turbulence. Luttrell [31] discusses inertia
effects as the source of this occurrence. The value of 350 is within
the "transition' values of 300-600 determined by Stair in his experiments
in which water was the sealant but is somewhat above the value of 180

of Figure 9, page 58, determined by Hodgson and Milligan [7] using air.
Luttrell [31] reports that the onset of this transition occurrence is
delayed with decrease in the groove aspect ratio. This is substantiated
by comparing the transition value of Hodgson and Milligan's data for

an aspect ratio of 11.9 with that reported here which has an aspect
ratio of essentially unity.

The major difference in the trends of the continuum sealing data
from that previously reported is in the lower Reynolds number range below
350 where the sealing coefficient decreases with decreased Reynolds
number. A number of investigators [7, 17, 18, 19, and 31] have reported
excellent agreement in this range with the Boon and Tal theory which
predicts a constant value of sealing coefficient. Because of this
departure from "anticipated" results additional investigations using

completely different and independent methods for measuring the seal AP
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and shaft speed were conducted and the original data confirmed.

Figure 17 shows a plot of AP across the seal versus shaft speed. For

all other sealing coefficient variables held constant, the AP must
increase linearly with shaft speed for A to remain constant. It may be
observed that the major departure from a linear relation occurs at very
low shaft speeds. For this reason, Figure 18 is included to enlarge

the speed range below 10,000 rpm. It is this small departure from
linearity that produces the pronounced changes in the sealing coefficient
values in this range. A close examination of Luttrell's Figure 21 of
Reference [31] and of Stair's Figure 21 of Reference [19] and Figures 2,
4, and 7 of Reference [18] show slight evidences similar to that reported
here, The data of Ketola and McGrew [32] also show similar trends.

These references have either omitted or made minimum mention of this
aspect.

As previously stated, the general level of the sealing coefficient
data is above the predictions of Equation (2-29) and does not show the
degree of correlation reported in references [7, 17, 18, and 19] between
theory and experiment. This may be partially due to the fact that in the
evaluation of the sealing coefficient data that the true AP/L drop across
the viscoseal section was used. Stair in References [18 and 19] measured
the pressure distribution along the seal length and utilized dP/dL based on the
best plot of the pressure distribution exclusive of the upstream pressure.
Stair reports on page 5 of Reference [18] that the observed actual pressure
differences, AP, were approximately 88 to 92 percent of the theoretical values.

e s

If similar ratios were applied to the experimental results reported herein,
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considerable improvement in the correlation between theory and experiment
would result. There are many other factors which may account for the
differences including vibrations, shaft runout, eccentricity,
misalignment, end effects, and experimental uncertainty. After
consideration of each of these, however, it is the writer's opinion

that the primary reason is due to the absence of boundary conditions

on the groove side walls in the theoretical model when dealing with
grooves of very low aspect ratio. Luttrell's data for grooves of lower
aspect ratios [31l] alsc show decreases in sealing performance in comparison
to the Boon and Tal theory similar to that reported here., The previous
investigations of references [7, 18, and 19] that have reported very

good agreement between experiment and the Boon and Tal theory have been
for grooves of much higher aspect ratios.

The results of this continuum investigation of sealing coefficient
suggest the need for caution when applying the Boon and Tal model to
viscoseal designs having low aspect ratio grooves. A similar conclusion
was reached in Chapter IV based on the net leakage investigations.,

This pertion of the study has also indicated the general need for
additional experimental investigations in the low Reynolds number regime
with emphasis on low aspect ratio grooves.

It may be noted that the absence of experimental data near a
clearance Reynolds number of 300, or a shaft speed of 16,000 rpm, is

due to the existence of a critical shaft speed at this condition.




APPENDIX D

CONSTANTS AND CONVERSION FACTORS

Argon Constants

M = 39.944

~24
m = 66.2 x 10 gm/molecule
U= 2,258 x 10--4 gm/cm sec

i T = 297°K
1.262 x 10 = 1lbm/in sec

Fundamental Constants

K = 1.3804 x 1616 dyne—-cm/molecule~°K

R, = 8.3166 x 10 dyne-cm/gm-mole-"K

Conversion Factors

1 dyne/em® = 0.7501 phg




APPENDIX E

TABULATED EXPERIMENTAL REDUCED DATA FOR

RAREFIED VISCOSEAL NO. 1
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TABLE IV

NET LEAKAGE REDUCED DATA FOR SEAL NO. 1, ZERO RPM

Data P P, N/AP
Point T b 1/N -14
No. Uhg Hhg K x 10
1 16,800 7,230 24,68 18.16
2 19,150 7,705 27.57 20.30
3 21,400 8,155 30.32 21.60
4 22,600 8,430 31.87 22.08
5 17,000 7,465 25.09 17.45
6 12,150 565 13.05 10.60
7 9,370 538 10.15 9.06
8 8,100 522 8.84 8.24
9 6,850 512 7.54 7.28
10 5,450 500 6.10 6.34
11 4,180 495 4.79 5.50
12 4,200 490 4.80 5.46
13 2,950 487 3.52 4,65
14 1,870 482 2,41 3.81
15 13,800 1,250 15.40 11.31
16 1,740 255 2,10 3,47
17 1,700 260 2.01 3,60
18 1,720 275 2.05 3.59
19 752 227 1.00 3.23
20 428 132 0.57 3.02
21 318 129 0.46 2.83
22 251 131 0.39 2,40
23 216 131 0.36 2,48
24 4,000 131 4.23 5.26
25 2,320 172 2.55 4.15
26 1,460 166 1.66 3.46
27 1,025 168 1.22 3.30
28 600 172 0.77 2.77

29 475 131 0.62 3.20




TABLE V

ATA FOR SEAL NO. 1, DYNAMIC SPEEDS

=z
=
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Data P P N/AP c
; T b |
Point 1/N -14
No. Lhg uhg K x 10 in. x 10
10,000 rpm, ¢ x 10° = 3.87 in., T = 146.4
1 9,380 335 8.83 0.558 3.81
2 6,410 60 6.03 0.117 3.80
3 13,200 86 12.9 1.50 3.90
4 16,700 93 15.9 2.74 3.87
5 28,700 150 27.5 7.80 3.87
6 32,500 166 30.9 9.80 3.87
7 8,050 64 7.78 0.237 3.91
10 31,000 233 30.7 10.15 4.01
5,000 rpm, ¢ x 10° = 3.85 in., E? = 176.6
11 16,800 63 16.6 7.29 4.0L
12 11,200 42 10.6 .14 3.84
13 7,900 33 7.18 2.61 3,69
14 6,150 30 5.88 1.88 3.88
15 3,700 27 3.51 0.953 3.84
16 1,950 26 2.03 0.540 3,76
17 1,250 29 1.32 0.290 3.94
30,000 rpm, ¢ x 10° = 3.29 in., ?; = 807
18 4t 000 53 36.0 0.451 3.33
19 49,900 64 40.9 1.36 3.33

20 39,800 49 31l.4 0.038 3.20
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TABLE VI

RAREFIED SEALING COEFFICIENT REDUCED DATA FOR SEAL NO. 1

S N c
No. Lhg Uhg l/NK A Rec in., x 103

10,000 rpm, © x 10> = 3.98 in.
SP1 7,160 267 7.47 40.2 1.01 4.18
SP2 9,860 1,220 11.1 31.8 1.49 4,15
SP3 5,200 275 5.01 68.3 0.67 3.80
SP9 14,200 3,495 16.9 28.3 2.28 3.98
sP10 17,200 6,605 22.6 29.3 3.02 3.94
SP13 19,200 7,755 25.5 27.1 3.42 3.94
SP14 8,700 44 8.29 36.4 1.10 3.91
SP19 7,350 44 6.96 43.1 0.93 3.91

5,000 rpm, ¢ x 105 = 3.99 in,
SP4 2,600 166 2.69 60.8 0.18 4,04
SP5 11,000 4,730 15.6 22.5 1.03 4.11
SP6 3,880 176 3.94 39.9 0.26 4,04
SP7 3,160 407 3.47 53.7 0.23 4,04
SP15 2,850 50 2.72 56.7 0.18 3.90
SP16 13,300 8,245 20.6 30.2 1.39 3.98
SP17 3,920 146 3.69 46.5 0.25 3,73
SP18 4,400 382 4.65 36.6 0.31 4,04
SP20%* 4,200 559 b4o47 43.6 0.30 3.90
SP21% 7,000 1,835 8.44 29.6 0.57 3.97
SP22% 7,550 1,710 8.94 25.5 0.60 4,01
SP23% 13,100 8,145 20.7 29.8 1.39 4.04

*Argon blanket on graphite ring seal.

30,000 rpm, < x 10> = 3.41 in.

SP11 35,200 104 29.3 34.7 11.8 3.44

SP12 38,100 68 30.9 33.5 12.5 3.37






